

5	1	$\hat{\sim}$	3	2	4
3	4	2	1	$\hat{\Sigma}$	5
\dot{z}	2	4	5	3	1
1	3	5	\hat{z}	4	2
4	$\hat{\Sigma}$	1	2	5	3
2	5	3	4	1	$\hat{\Sigma}$

is	2	1	6	n	4	3	5	7
4	5	的	7	2	3	家	6	1
3	7	6	5	＊	1	2	4	W
2	s	5	1	3	6	去	7	4
1	6	4	碞	7	2	5	3	N
7	\％	3	4	5		1	2	6
6	3	7	走	1	5	4	走	2
is	4	2	3	6	is	7	1	5
5	1	的	2	4	7	6	込	3

Solution codes:

1: 2111, 32, 2111
2: 211, 1211, 411
3: 13121, 413
4: 1113211, 23212
5: 11231, 12131
6: 213112, 122221
7: 1151, 21131
8: 11332, 12313
9: 6359203129
10: 9152137823
11: 3421X5, 25341X
12: 51X2476X3, 71X4X6253
13: 234165, 654312
14: 14327856, 64583172
15: 232, 412
16: 22114, 4222
17: 112311, 423

18: 2314,2111212
19: 23, 11, 32
20: 1211, 15, 111
21: 25, 21121
22: 1321111, 3223
23: 231, 111, 121
24: 211, 212, 111
25: XXXRXIXUXCXXS, XXCSXASXXHIXR, XCXICXOXX

Selected solving tips:

4: Try to find cells that are hard to reach for any pair. After making a few connections, it should be possible to determine most of the rest.
6: All possible shapes have some shared properties- this should allow for an easy break-in. Afterwards, make sure that subregions have the same amount of cells of each color.
11: 5 and star will only be disambiguated by the no touching constraint stars have- but that doesn't mean placing them is the final step.
17: 2 cell passages are quite restricted under the rules of the genre, as a $2 x n$ rectangle is impossible to fill.
20: It's possible to determine how many times ice cells are used from the very beginning of the puzzle.
25: Q is obviously part of AQUARIUS, and V part of VIRGO, but is there a less obvious determination possible? There are some shared properties of all possible shaded cell connections in one corner that can be used to resolve much of the grid. For the ending, where can the N reach without forcing a 2×2 of shaded cells?

