Yin Yang

> Divide the grid into two regions of black and white by placing either a black or a white circle in each empty cell.
$>$ All circles of same color are connected to each other, vertically or horizontally.
$>$ No 2X2 group of cells can contain circles of a single color.
Answer Key: For each marked row/column, enter the length of continuous white and black circle blocks - from left to right / top to bottom.

Yin Yang - 3 (4 points)

Yin Yang - 4 (7 points)

Spiral Galaxies

> Divide the grid into 180 degree symmetrical regions along the gridlines, so that each cell is part of only one region.

- Each region must contain exactly one circle, which represents the central symmetry point of the region. All circles are given
> All cells must be part of a region.
Answer Key: For each marked row/column, write the number of cells that belong to different regions - from left to right / top to bottom.

Spiral Galaxies - 1 (2 points)

Spiral Galaxies - 3 (6 points)

Spiral Galaxies - 2 (4 points)

Spiral Galaxies - 4 (10 points)

Fillomino
> Divide the grid into different regions along the gridlines.
> No two regions of the same size (number of cells in the region) can touch each other by a side.
$>$ Numbers in the grid indicate that the cell is part of a region of that size (number of cells in the region).
$>$ A region can contain more than one given number.
> There can be regions without any given numbers also.
Answer Key: For each marked row/column, write the number of cells that belong to different regions - from left to right / top to bottom.

Fillomino-1 (2 points)

Fillomino-3 (5 points)

Fillomino-2 (2 points)

Fillomino-4 (5 points)

Area Division

> Divide the grid into several regions along the gridlines.
$>$ Each region has ALL the letters of the given range exactly once.
> Each letter must be part of exactly one region.
Answer Key: For each marked row/column, write the number of cells that belong to different regions - from left to right / top to bottom.

Shikaku
> Divide the grid into a number of non-overlapping rectangles, including squares, along the grid lines.
$>$ Numbers in the grid indicate the size (number of cells) of the rectangle they are in.

- Each rectangle must contain exactly one given number.

Answer Key: For each marked row/column, write the number of cells that belong to different regions - from left to right / top to bottom.

No-Rectangles Fillomino
> Apply rules of Fillomino.
$>$ However, none of the regions can form a rectangle.
Answer Key: For each marked row/column, write the number of cells that belong to different regions - from left to right / top to bottom.

> Divide the grid into several regions along the gridlines such that each region has exactly 4 or 5 cells.

- Each region must be 180 degree symmetrical.
> If a region contains a black circle, then it is the point of symmetry.
> Regions may not be 2×2 squares.
Answer Key: For each marked row/column, write the number of cells that belong to different regions from left to right / top to bottom. Ignore the black cells for the answer key.

Spiral Galaxies $4 / 5$ (14 points)

End of Test

