F L O R I A N
K I
R C H
T A P A
MASTER
2011

L		$\mathrm{P}_{\text {A }}$		R			${ }^{\mathrm{N}}$ A							T		H
											$\mathrm{N}_{\mathrm{L}} \mathrm{P}$					
${ }^{\text {T }} \mathrm{A}$					I				I					C		
			R			${ }^{\text {P }}$ A		A_{N}			R		R			F
F																
		0						${ }^{\text {P }}$ A			1		0		L_{L}	
			${ }^{T}$ A			L_{T}										
F_{L}									K					L		
					${ }^{T}$ A						$\mathrm{P}_{\text {A }}$					
		0					K									F
										N_{N}			L_{T}			
	H_{F}		R		1			${ }^{\text {T }}$ A						$0^{\text {L }}$		
																H_{L}
${ }^{\text {L }}$ P			R		I			L_{A}^{L}		${ }^{P}{ }_{N}$			R			
		C					A				A^{\prime}					$\mathrm{P}_{\text {A }}$
				$L_{\text {L }}^{\text {L }}$												
H		0							N			M		$\mathrm{T}_{\text {A }}$		F

Knapp Daneben Tapa Logic

Follow classic Tapa rules. Each digit from 0-7 is crypted with a letter, but all given letters in the grid are wrong. The correct letters are either 1 after or 1 before the given letters (Note the exception in A). Different givens may become the same letter (digit), but each particular letter always represents the same digit. $\mathrm{L}=\mathrm{M}=1$ is given as a clue and this means all L letters should be 1 . But it is possible for another letter to also become M , for example N .

```
F L O R I A N
K I R C H
T A P A
M A S T E R
EG KM NP QS HJ в mо
JL HJ QS BD GI
SU B OQ B
LN B RT SU DF QS
```

